Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat

نویسندگان

  • Anna N. Vongerichten
  • Gustavo Sato dos Santos
  • Kirill Y. Aristovich
  • James Avery
  • Andrew W. McEvoy
  • Matthew C. Walker
  • David S. Holder
چکیده

Epilepsy affects approximately 50 million people worldwide, and 20-30% of these cases are refractory to antiepileptic drugs. Many patients with intractable epilepsy can benefit from surgical resection of the tissue generating the seizures; however, difficulty in precisely localising seizure foci has limited the number of patients undergoing surgery as well as potentially lowered its effectiveness. Here we demonstrate a novel imaging method for monitoring rapid changes in cerebral tissue impedance occurring during interictal and ictal activity, and show that it can reveal the propagation of pathological activity in the cortex. Cortical impedance was recorded simultaneously to ECoG using a 30-contact electrode mat placed on the exposed cortex of anaesthetised rats, in which interictal spikes (IISs) and seizures were induced by cortical injection of 4-aminopyridine (4-AP), picrotoxin or penicillin. We characterised the tissue impedance responses during IISs and seizures, and imaged these responses in the cortex using Electrical Impedance Tomography (EIT). We found a fast, transient drop in impedance occurring as early as 12ms prior to the IISs, followed by a steep rise in impedance within ~120ms of the IIS. EIT images of these impedance changes showed that they were co-localised and centred at a depth of 1mm in the cortex, and that they closely followed the activity propagation observed in the surface ECoG signals. The fast, pre-IIS impedance drop most likely reflects synchronised depolarisation in a localised network of neurons, and the post-IIS impedance increase reflects the subsequent shrinkage of extracellular space caused by the intense activity. EIT could also be used to picture a steady rise in tissue impedance during seizure activity, which has been previously described. Thus, our results demonstrate that EIT can detect and localise different physiological changes during interictal and ictal activity and, in conjunction with ECoG, may in future improve the localisation of seizure foci in the clinical setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study.

Malformations of cortical development (MCDs) are commonly complicated by intractable focal epilepsy. Epileptogenesis in these disorders is not well understood and may depend on the type of MCD. The cellular mechanisms involved in interictal and ictal events are notably different, and could be influenced independently by the type of pathology. We evaluated the relationship between interictal and...

متن کامل

Investigation of ECG Changes in Absence Epilepsy on WAG/ Rij Rats

Introduction: Seizures are symptoms associated with abnormal electrical activity in electroencephalogram (EEG). The present study was designed to determine the effect of absence seizure on heart rate (HR) changes in electrocardiogram (ECG). Methods: HR alterations were recorded simultaneous with spike and wave discharges (SWD) by EEG in 6 WAG/Rij rats as a well characterized and validated ...

متن کامل

Electrical impedance tomography with cortical or scalp electrodes during global cerebral ischaemia in the anaesthetised rat.

The performance of a prototype impedance imaging (Electrical Impedance Tomography, EIT) system using cortical or scalp electrodes has been assessed in a model of global cerebral ischaemia in the anaesthetised rat. In preliminary calibration experiments using a circular array of electrodes around a tank of saline, the centre of a polythene rod could be localised with a mean error of 4% of the ta...

متن کامل

Ictal and Interictal Electroencephalography of Mesial and Lateral Temporal Lobe Epilepsy; A Comparative Study

Background: Epilepsy is considered as one of the most important disorders in neurology. Temporal lobe epilepsy is a form of epilepsy including two main types of mesial and lateral (neocortex). Objectives: Determination and comparison of electroencephalogram (EEG) pattern in the ictal and interictal phases of mesial and lateral temporal lobe epilepsy. Materials and Methods: This cross-sectiona...

متن کامل

Ictal but Not Interictal Epileptic Discharges Activate Astrocyte Endfeet and Elicit Cerebral Arteriole Responses

Activation of astrocytes by neuronal signals plays a central role in the control of neuronal activity-dependent blood flow changes in the normal brain. The cellular pathways that mediate neurovascular coupling in the epileptic brain remain, however, poorly defined. In a cortical slice model of epilepsy, we found that the ictal, seizure-like discharge, and only to a minor extent the interictal d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2016